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Some modifications of Davidson’s eigenvalue algorithm are dis- 
cussed and their performances on a number of test cases are assessed. 
They are found to offer improvements over the original algorithm. A 
method for solving the equations stemming from the quasi degenerate 

variationalperturbation theory is presented. Solutions can be obtained 
as simply as with the eigenvalue algorithm for both ground and excited 
states. 0 1992 Academic Press. Inc 

Davidson algorithm will be discussed. The section also 
includes results that compare the performance of the 
algorithms for similar matrices. 

2. THE EIGENVALUE PROBLEM 

The eigenvalue equation is 

1. INTRODUCTION 

The configuration interaction (CI) method is used to 
calculate electronic wavefunctions for the ground state and 
excited states of atoms and molecules. It leads to the forma- 
tion of a large, real, symmetric matrix for which the lowest 
eigenvalues and associated eigenvectors must be found. 
Generally about l-5 % of the matrix elements are non-zero 
and less than 10 eigenvectors are required. The dimension of 
the matrix is usually larger than lo4 so the non-zero matrix 
elements are stored on disk. For large scale calculations, 
with matrix dimensions greater than 105, the matrix may be 
too large to store on disk and the elements must be 
recalculated as they are needed [ 11. Matrices of dimension 
greater than lo6 have been used and the present record size 
is lo9 [2]. In these cases, a simple iterative method is 
preferred for calculating the eigenvectors since the non-zero 
matrix elements are accessed in an essentially random order. 
The Davidson algorithm [3] is the most widely used 
approach for matrices of this type, and it will be described 
in the next section. A number of improvements and 
amendments to the usual implementation of the algorithm 
will be discussed and some results will be presented. 

Hc, = & ck (1) 

for which only the K lowest eigenvalues and eigenvectors 
are required. K is very much less than the dimension of the 
matrix, N. For the sake of clarity it will now be assumed that 
only the lowest eigenvalue is desired, and the problem of 
obtaining the higher ones will be considered separately. 

Given some guess to the eigenvector, x, perturbation 
theory ca.n be used to give an improved eigenvector, (x + 6), 
where 6 satisfies 

(H-AI)6= -(H-21)x. (2) 

Suppose the eigenvalue, ;I, is approximated by the Rayleigh 
quotient defined by 

p = xTHx/xTx. (3) 

For Eq. (2) to be useful, some simple approximation to the 
inverse of (H - p I) must be used. The Davidson method 
approximates the matrix by its diagonal, D, and Eq. (2) can 
be rewritten to give 

6= -(D-pi)-’ (H-pI)x. (4) 

Quasi degenerate variational perturbation theory Other estimates of the inverse of (H - pI) have been 
(QDVARPT) [4] is an alternative method for calculating suggested by Morgan and Scott [S]. At this point, (x + 6) 
electronic wavefunctions. The third section contains a could be used as the new x in Eq. (4) and this procedure 
description of how the equations resulting from this method could be repeated until convergence had been reached. 
may be solved for the ground state and excited states. The Unfortunately, this approach has poor convergence 
similarities and differences between this approach and the characteristics. 
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The method can be improved by coupling it with one of 
the desirable features of the Lanczos method [6]. The trial 
vector, x”, at some iteration n, is expanded in a linear 
combination of orthogonal vectors. 

x” = 1 cqb’. 
i=O,?l 

(5) 

The subspace spanned by the b vectors will be referred to as 
the b space, and the matrix composed of the b vectors as B. 
The coefhcients ai are found by minimising the Rayleigh 
quotient of x”, leading to a projected eigenvalue equation 

BTHBa = pa. (6) 

This yields an upper bound to the exact eigenvalue. The 
correction to this optimal vector is obtained via Eq. (4) and 
the correction vector is orthogonalised to the b space. The 
b space is then supplemented by this vector and the whole 
procedure is repeated until convergence is reached. At each 
iteration, the algorithm requires the formation of the 
product Hb”, and for large matrices, this step takes most of 
the time. The step also requires the storage in main memory 
of the full length vectors b” and Hb”, and additionally, the 
application of Eq. (4) and (5) necessitate the storage on 
disk of all previous b vectors in the subspace and their 
products with H. 

The iterative process can be considered to have converged 
when the weight of the latest addition to the b space in 
Eq. (5) drops below some threshold. Alternatively, 
convergence can be assessed by the size of the norm of the 
residual vector, r, 

r=(H-pI)x (7) 

which yields a lower bound to the exact eigenvalue. In 
applications with CI matrices, a typical threshold for both 
tests is 10p4. 

The extension to the calculation of higher roots is 
straightforward. The higher roots produced by the subspace 
diagonalisation are necessarily approximations to the 
higher roots of the full matrix. The kth root of the full 
matrix can be obtained by successive improvement of the 
vector derived from the kth eigenvector of the subspace 
matrix. This approach is guaranteed to be successful when 
the estimates of the k - 1 lower roots produced by subspace 
matrix diagonalisation are smaller than the k th exact eigen- 
value. This means that reasonable approximations to the 
lower eigenvectors must be contained in the b space. 

When all the eigenvalues up to a certain number are 
required, there is some flexibility in the order in which one 
optimises them. Liu has pointed out [7] that since one of 
the major bottlenecks in the solution of (1) is reading in 
from disk or recalculating the matrix elements, it is advan- 

tageous to add more than one vector at a time to the B 
matrix. This approach will be referred to as the block 
Davidson method because of its similarity to the block 
Lanczos method. For each b vector added, it is necessary to 
store two vectors in main memory, and so in general, not all 
6,, k = 1, . . . . K, can be considered on every iteration. We 
add as many vectors as memory constraints allow, and cycle 
through the unconverged roots in turn until all the desired 
eigenvectors have been converged. Our experience is that 
the procedure offers considerable saving in CPU time 
over the “one root at a time” approach, and this will be 
illustrated by examples later in this section. 

The choice of initial guess will affect the convergence rate 
of the algorithm. There is a danger that the method may 
sometimes converge to the wrong eigenvector if poor guesses 
are provided. The extreme of this situation would be where 
the matrix contained hidden symmetry and the starting vec- 
tor has zero overlap with the desired root; in this case, the 
algorithm will fail. Theoretically, except in these symmetry 
controlled failures, the method will always converge to the 
right state, provided that the vector is converged tightly 
enough; but in practice, sufficiently tight convergence 
thresholds are not always used. It is therefore important 
that initial guesses be chosen that have reasonably large 
overlaps with the lowest eigenvectors of the matrix. 

A common method of generating initial guesses would be 
by diagonalisation of a small submatrix of H. Another 
approach would be to choose unit vectors which were 
thought to have contributions in the desired eigenvectors. 
The simplest way of choosing the unit vectors would be 
based on the size of the diagonal elements of H. Alter- 
natively, second-order perturbation theory can be used to 
improve on this estimate of the eigenvalues, but this requires 
a pass through the whole matrix so it is more expensive. 
One advantage of using unit vectors is that one is less likely 
to run into problems associated with hidden symmetry. 
However, none of these choices guarantees convergence to 
the lowest solutions and a more practical approach is to 
simply ask the algorithm to find more roots than are 
needed. We routinely investigate more roots than are 
wanted and converge them to a soft convergence threshold 
(0.005). The unwanted higher roots are then rejected and 
the remaining roots fully converged. It is noted that if one 
requires an eigenvalue of unknown index but known zeroth- 
order eigenvector, one can convergence to it selectively by 
always choosing that eigenvectors of the subspace matrix 
that gives the largest overlap with the initial guess [IS]. 

The algorithm requires the storage of every b vector and 
its product with the full matrix, and for large matrices they 
must be stored on disk and accessed at every iteration. The 
list of vectors must be truncated periodically to restrict the 
storage used by the vectors and to reduce the IO associated 
with their manipulation. The list is usually contracted to the 
current approximations to the roots required, and this is 
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equivalent to restarting the procedure with improved initial 
guesses. The truncation is expected to inhibit convergence 
because each vector in the b space will contribute to the best 
trial vector at each iteration. If the b space is truncated, the 
trial vector at the next iteration will not benefit from the 
minimisation of the Rayieigh quotient in the full b space. 
Van Lenthe and Pulay have pointed out recently [9] that, 
when searching for the lowest vector, truncation down to 
IWO vectors may be performed at every iteration without 
significant reduction in the speed of convergence. This 
startling conclusion comes from the theory of the conjugate 
gradient method [ 10, 111. 

The conjugate gradient method and the related method of 
conjugate directions can be used to solve linear equations of 
the type 

Ac=k, (8) 

where k is some constant vector and A is a real, symmetric, 
positive definite matrix [lo]. It is an iterative process in 
which, x’, the approximation to the solution vector at some 
iteration, i, is expanded in a subspace, P: 

x’=xO+aop’+ ... +cr,_,pz-‘. (9) 

In the expansion, x0 is the initial guess at the solution. The 
vectors p (together with x0) are chosen to be mutually 
conjugate in the sense that for different vectors pj and pk 
with j and k less than i, 

(p’)’ Apk = 0. (10) 

The coefficients in Eq. (10) are found by minimising the 
error function, f( xi), where 

f(x)=(c-x)~A(c-x). (11) 

If the process is judged not to have converged, a new vector, 
pi, is found from the residual, ri, by making r’ conjugate to 
the vectors in P. The residuai is defined by 

r’=k-Ax’. (12) 

The basic results of the conjugate gradient theory are that 
this choice of residual is orthogonal to the subspace P, and 
that condition (11) can be satisfied for the new p vector 
without explicitly considering all previous p’. It follows that 
minimisation of f(xi) in the subspace P is equivalent to 
minimisation in the restricted space of xi-’ and pi-‘. 

This is the rationale for truncating the vector list to two 
vectors rather than one. It was argued [7] that in the latter 
stages of the Davidson procedure the eigenvalue is essen- 
tially constant, and so the eigenvalue equation is like a linear 

equation system. For the ground state, the appropriate 
linear equation is obtained from Eq. (2) as 

QT(H --pI) Qd = Q=(H - pI)x, (13) 

where Q is the N x (N - 1) projection into the subspace 
orthogonal to x, Qd = 6, and intermediate normalisation 
has been used so 6=x = 0. The matrix QT(H -pI)Q will 
always be definite provided that 

P < (2 L + M/2. (14) 

If the eigenvalue is sufficiently converged that it can be 
assumed to be constant, this condition should be satisfied. 
Following work by Wormer et al. [lo], Van Lenthe and 
Pulay showed that in this case the Davidson algorithm is 
formally equivalent to the conjugate gradient method. 
Consequently, truncation to two vectors will not impede 
convergence. When forming the new B matrix, we set b’ 
equal to the current guess to the eigenvector, xi, and set b2 
equal to that part of the previous iteration’s guess to the 
vector, x’- ‘, that is orthogonal to xi. (These vectors span 
the same space as the vectors xl-l and pi-’ referred to in 
the preceding discussion.) The underlying assumption of 
constant eigenvalue is justified because the minimisation of 
p in the b subspace is variational, and the eigenvalue 
converges much faster than the vector. 

It was proposed [7] that truncation to two vectors would 
be useful in very large matrix diagonalisations where the 
matrix is never stored but is recalculated. In such cases, it is 
conceivable that there may only be enough disk space to 
store a few vectors and products, in which case the method 
offers a considerable advantage. We have taken a slightly 
different view because truncation will still inhibit conver- 
gence in so far as the eigenvalue is not constant during 
the iterative process. Therefore in the general case, one 
should use as much disk space as one has available, 
provided that the IO associated with the manipulation of 
the vectors does not start to become competitive with the 
time taken accessing or calculating the matrix. In line with 
the conjugate gradient method, the B matrix should be trun- 
cated to two vectors per root needed, rather than just one. 
In a fixed amount of disk space, this means that truncation 
will be performed more often, and in cases where the eigen- 
value is not approximately constant, it could actually slow 
down convergence. However, our experience has been that 
this form of truncation is more effective than the original 
approach. 

The question arises as to whether this truncation can be 
applied successfully to hgher roots. To examine this 
consider the linear equation analogous to (13) for higher 
roots. Q will now be an N x (N-k) projection into the 
subspace orthogonal to the k current guesses to the k lowest 
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eigenvectors. The condition that the matrix QT(H - pkI)Q 
be positive definite is now 

P<(Ak+2k+l)/2- 1 (Pi-Ai)/2, (15) 
i=O,k- I 

where pi is the Rayleigh quotient estimate of the ith eigen- 
value, ;1,. The condition is much stricter for higher roots 
than for the first root and in general requires that lower 
roots must be well converged. Truncation to two vectors 
would therefore be desirable when roots are obtained one at 
a time with the lower ones computed first, but as has been 
discussed previously, block methods are a more efficient 
way of obtaining the first K roots of a large matrix. We trun- 
cate to two vectors per unconverged root in our block 
Davidson algorithm and hope that the lower roots converge 
more quickly and are sufficiently converged so that the cru- 
cial matrix for the kth root is positive definite. This means 
that at some iteration, i, where truncation is performed, the 
new b space spans the set {xi, xhP I } for all k < K corre- 
sponding to converged roots, together with the set {xi} for 
all k d K corresponding to converged roots. If the lower 
roots are not sufficiently converged, the only harm done is 
that the extra vector included in the b set will take up space 
which could perhaps have been used by a more effective 
vector. 

One of the key steps in the Davidson algorithm is the 
minimisation of the Rayleigh quotient in the orthogonal 
subspace generated in the iterative procedure. Another 
expansion is possible based on the minimisation of the least 
square error in the residual vector [12-131. The subspace 
eigenvalue equation then takes the form 

Ma = oa, (16) 

where the matrix M is given by 

M,=[(H-pI)b’]=(H-pI)b’ (17) 

One of the attractive features of the least squares method 
is that it concentrates on convergence of the vector rather 
than the eigenvalue. The latter is quickly converged in the 
variational minimisation of p, so the method could be used 
to complement the Davidson algorithm rather than as an 
alternative. As a check on the reliability of the least squares 
extrapolation, the Rayleigh quotient of the extrapolated 
vector is calculated. If the energy increases by too much the 
extrapolation is rejected. This policy came from experience 
with the method; it was observed that the method was more 
prone to converge to higher states than the Davidson 
method. This was especially noticeable when more than one 
root was sought. Also we found that the method converged 
more slowly when used instead of the block Davidson- 
method, but in contrast, superior convergence was observed 
if the least squares extrapolation was performed periodi- 
cally. 

The exact combination that we employed was the 
following. The block Davidson algorithm was used until the 
root in question had converged beyond a certain threshold. 
For CI matrices the spacing of the eigenvalues is typically 
0.1 to 0.5 and a good threshold here appears to be 5 x lo-‘. 
The extrapolation was performed one out of every three 
times for roots that satisfied the first criteria. If p changed by 
more than lop3 as a result of the least square step, the extra- 
polation was rejected. 

Table I illustrates the performance of these various 
improvements to the algorithm for a small CI matrix where 
we were interested in obtaining 10 roots. The block 
Davidson method is seen to be superior to the “one root at 
a time” approach, despite the fact that considerably more 
products of the vector on the matrix are performed. Trunca- 
tion to two vectors per root rather than one resulted in a 
20% reduction in the number of iterations, and the use of 

TABLE 1 

Comparison of Different Modifications of the Davidson Method 

and the new, extrapolated guess, xe, is defined through the 
lowest eigenvector of M by 

Method 
Number of 
iterations 

Number of CPU time 
matrix vector (seconds on 

products IBM 3090 120s) 

xc = BE (18) 

The extrapolation procedure is specific to one eigenvector 
(through p), so in a block procedure the diagonalisation 
must be performed more than once. However, since it is our 
implicit assumption that the subspace matrix is very much 
smaller than the original one, this not a drawback. The 
choice to make for p in Eq. (17) is not clear cut. To be truly 
consistent, p should be evaluated as a function of xe, but this 
would make the soltion of Eq. (16) more troublesome. We 
obtain p from the variational minimisation of the Rayleigh 
quotient in the current b space as embodied by Eq. (6). 

A 392 392 3740 
B 101 537 2960 
C 83 470 2580 
D 85 389 2270 
E 62 367 2040 

Note. The matrix is from a restricted CI of Fc with a (12s, 8p, 6d, 2f, 
g) basis set. The matrix dimension is 3803 and 10 eigenvectors were found. 
A. Original Davidson algorithm with each root obtained separately. 
B. Block Davidson method. C. Method B with truncation to two vectors 
following conjugate gradient approach. (Truncation occurred when 100 
vectors were stored on disk.) D. Method B with least squares extrapola- 
tion (See text for details of how often the extrapolation was performed.) 
E. Method C with least squares extrapolation. 
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occasional least squares extrapolation caused a further 20 % 
increase in efficiency. This data shows that all the changes 
outlined here should be employed with the Davidson 
algorithm to yield maximum efficiency. The reduction 
from 392 iterations for the original method to 62 iterations 
for the block Davidson method with least squares extra- 
polation and truncation to two vectors is very encouraging. 
For large matrices where the computational time is 
controlled by how many times elements are retrieved from 
disk or are recalculated, these improvements would result in 
considerable savings. 

Although the Davidson algorithm was developed in the 
context of CI calculations, it is a general purpose algorithm 
when only a few eigenvectors are wanted for larger matrices. 
Its performance is generally superior to the Lanczos 
method. To illustrate this and to test further some of the 
modifications to the Davidson method that we have out- 

TABLE II 

Different Diagonalisation Methods Attempted on the 
First Test Matrix Which Is Described in the Text 

Number Number 
Diagonal Of of Number of 
elements Method roots iterations products Time 

SW(n) A 1 5 5 240 

%rt(n) B 1 6 6 290 

SW(n) A 5 20 12 4840 

SW(n) C 5 20 70 4710 

SW(n) D 5 52 52 6590 

Sqrt(n) E 5 31 81 5022 

W(n) F 5 20 70 5640 

n A 5 5 21 860 
n B 1 >50 
n C 5 6 24 1170 
n D 5 14 14 1180 
n F 5 5 21 980 

n2 A 5 4 17 
n2 B 1 >50 
n2 C 5 4 18 
n2 D 5 11 11 
n2 F 5 4 17 

First five eigenvalues 
SW(n) -2859.34966 0.192313 0.881275 1.401652 1.830419 

,: 
-95.485788 2.291165 3.367710 4.419722 5.464841 

-0.251141 4.023443 9.014725 16.011851 25.010810 

Note. The matrix has a dimension of 106. The times are in seconds on 
an IBM RISC series/6000 model 540 computer. A. Guess obtained from 
diagonalising 10 by 10 matrix; truncation to two vectors per root when 25 
vectors and products are on disk; block Davidson method. B. Lanczos 
method. C. As method 1 but initial guess obtained from the five lowest 
diagonal elements of matrix. D. As method 1 but only one vector per 
iteration is operated on with the matrix. E. As method 1 but truncation 
to one vector per root is performed. F. As method 1 but least squares 
extrapolation is performed periodically. 

lined previously, we have generated some arbitrary and 
reproducible matrices and used the different methods to 
obtain eigenvalues. The first family of matrices were of 
dimension lo6 with all off-diagonal elements being 0 or - 1. 
The non-zero matrix elements occurred for i or j < 10, for 
Ii-j1 ~2, and for [i-j1 3 106- 12. The non-zero matrix 
elements were regenerated on every iteration rather than 
stored on disk. The diagonal elements, H,,, n = 1, . . . . 106, 
were chosen to be (a) sqrt(n), (b) n, or (c) n2. The matrix 
can be solved analytically for the lowest root if the diagonal 
elements are constant and this allowed us to easily check 
that the matrix was programmed correctly. For these 
choices of diagonal elements, the second-order perturbation 
theory estimate of the lowest eigenvalue gives a series that 
(a) diverges like sqrt(N), (b) diverges like In(N), and (c) 
converges, where N is the dimension of the matrix. As 
shown in Table II, the algorithm converges in all three 
cases, but the difficulty of convergence reflects the behaviour 
of the perturbation series. The Lanczos algorithm, on the 
other hand, was unable to produce even one eigenvalue 
after 50 iterations in two of the cases. The block diagonal 
method is again seen to reduce the number of iterations con- 
siderably, although this saving in time is not pronounced 
since in this example the production of matrix elements is 
very quick. Similarly, the truncation to two vectors results 
in a large reduction in the number of iterations for case (a), 
the only case where truncation is performed. The change 
of initial guess and the use of occasional least squares 
extrapolation do not result in significant savings. 

TABLE III 

Different Diagonalisation Methods Attempted on 

Direct Product Matrices Which Are Discribed in the Text 

Number Number 
of of Number of Time 

Dimension Method roots iterations products (seconds) 

1048576 A 1 12 12 842000 
1048576 B 1 > 10” 

65536 A 3 26 58 18000 
65536 C 3 52 52 33000 
65536 D 3 29 64 2OcQo 

First few eigenvalues 
1048576 194306.64 

65536 13517.539 17379.774 17591.649 

Note. A. Guess obtained from lowest diagonal elements; truncation to 
two vectors per root when 19 vectors and products are on disk; block 
Davidson method. B. Lanczos method. C. As method A but only one vector 
per iteration is operated on with the matrix. D. As method A but truncation 
to one vector per root is performed. 

” The Lanczos method was converging very slowly indeed, and with each 
iteration costing 19 hours, it was decided to terminate the job after 10 
iterations. 
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and A second family of matrices was formed from the direct 
product of symmetric four by four matrices: 

r3 + 0.iL 0.1 0.2 0.3 1 

A,= 
0.1 4+O.lL 0.0 

0.2 0.0 5+O.lL 
(19) 

0.3 0.0 0.0 

Matrices of dimension 4’ were formed from A,, L = 
0 , ...> J- 1 with (10/16) of the elements being filled with 
nonzero values. These matrices are much less sparse and are 
more difficult to form than those in the previous example. 
Products of the eigenvalues of the appropriate A, matrices 
are the eigenvalues of the direct product matrices. The J = 8 
and J= 10 matrices were studied and the results are shown 
in Table III. Again the present algorithm worked without 
difficulty while the Lanczos algorithm converged very 
slowly and was aborted. The truncation to two vectors 
gives a modest improvement over the original truncation 
approach. 

3. SOLUTION TO QDVARPT EQUATIONS 

The CI method does not scale properly with the number 
of electrons and, for large systems, alternative methods are 
preferred. One of the simplest of the alternative methods is 
QDVARPT [4], which leads to a set of non-linear equa- 
tions that need to be solved. Other methods are similar to 
QDVARPT and efficient methods for obtaining the lowest 
solution to the equations derived from these approaches 
have been given by other authors [14, 151. Here our aim is, 
first, to describe how we have chosen to solve the equations 
for the lowest state, pointing out the similarities to the 
Davidson algorithm and, second, to show how our algo- 
rithm can be easily extended to the calculation of the first 
few roots of the equations. 

In the QDVARPT method, the equation to be solved is 
of the form 

“w- %I HP/ CP _ 
Hw I[ 1 W,,-&I C, - 0. (20) 

i is the root to be found, and & is given by (C,)T H,C,. 
The problem is solved with intermediate normalisation so 
(C,)’ C, is 1. The matrix is partitioned into blocks and the 
C, part of the vector is chosen so as to contain the dominant 
part of the solution vector. The space spanned by the C, 
vector is referred to as the reference space, and its dimension 
is usually very much less than of the full matrix. 
Equation (20) can be rewritten as 

387 

(&I - Hyy) Cc, = H,C, (22) 

Equation (22) can be written in the form of an effective 
eigenvalue equation 

{H, + H,,(&I - HJ’ H,) C, = ic,,, (23) 

where the matrix in curly brackets will be called Heff. 
Given some trial C, and C,, perturbation theory can be 

used on Eq. (22) to give a correction 6 to the C, vector. This 
is analogous to the procedure used to obtain Eq. (2) and (4) 
and yields 

S= -(D,-&I)-‘(H,C,+H,,C,-%,C,), (24) 

where D, is the diagonal of the matrix H,,. At every itera- 
tion a new 6 will be produced by this approach and, as in the 
Davidson procedure, the whole set of 6’s will provide a 
suitable expansion space for C,. As before, the vectors in the 
set will be called b space and the matrix composed of these 
vectors will be referred to as B. C, can be expanded in an 
equivalent way to Eq. (5) as 

C, N BLY, (25) 

where 01 is a vector of coefficients to be determined. 
Replacing for C, in Eq. (22) premultiplying by BT and 
rearranging gives 

a= {B=(&I-Hyq)B}-’ B=H,C,. 

It is now convenient to define Z by 

(26) 

so that 

Z = { B=(&I - H,,)B} -’ BTH, (27) 

ff =zc,, 633) 

in which case, the effective Hamiltonian can be written 
simply as 

He” = H, + H,BZ. (29) 

Thus at each iteration, the new Z matrix is calculated and 
then the effective eigenvalue problem is solved to give the 
updated C,. Equations (25) and (28) are then used to give 
C,, from which a correction is derived using perturbation 
theory (Eq. (24)). The correction is included in the b space 
and the iterative procedure is continued until convergence is 

H,C,+H,,C,=ICp 
reached. We apply two convergence criteria simultaneously: 

(21) the change in i between iterations must be less than 10e6; 
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and for the latest addition to the expansion space dT6 must 
be less than lo-‘. 

The similarities between the Davidson algorithm and the 
one outlined in this section are obvious. The C, vector is 
expanded in the space of the initial guess and perturbatively 
determined corrections to subsequent approximations to 
the vector. One difference is that we have chosen not to 
orthogonalise the expansion space, but this is purely a 
matter of taste. 

The algorithm outlined above also allows us to obtain 
excited state solutions to Eq. (21) for QDVARPT. A 
“block” method could be used to solve the problem 
although it would be more difficult to set up than for the 
eigenvalue problem because 1, will be differently defined for 
each state and Eq. (20) will need to be solved separately for 
each state. However, for large matrices the saving in the IO 
or the recalculation of the matrix would justify the block 
method. For development purposes, we have chosen to 
solve for each root separately. In this case, it is important 
when trying to optimise a higher root that lower vectors (or 
good approximations to them) are contained in the expan- 
sion space. This can be seen by comparing the effective 
eigenvalue equation, (23), with the projected eigenvalue 
equation that is actually solved in the algorithm and is given 

by 

H, + H,,B{B=(&I - H,,)B} -’ BTH, 1 c, = EC,. 

(30) 

Diagonalisation of the matrix in Eq. (30) will give good 
energies for the k lowest states only if the b space contains 
good approximations to the C, vectors for those k states. If 
this is not true then the ordering of the states on energy will 
not be reliable and it will not be possible to obtain the kth 
root of the exact problem in a controlled manner. Table IV 
contains some results illustrating the performance of the 
algorithm for excited states. The results are encouraging 
since they show that higher states can be studied with these 
methods in a similar manner to the CI problem. 

As with the Davidson method, it becomes necessary to 
truncate the expansion space when it becomes too large or 
unwieldy. If 2, A,, and C, are assumed to be constant during 
the iterative process, the theory of conjugate gradients can 
be used to justify retaining both the current iteration’s guess 
at the desired root and the previous iterations guess at this 
root. The argument in the last paragraph emphasises the 
importance of also putting the lower roots in the truncated 
space. The assumption that i, A,, and C, are constant is 
reasonable because in the later iterations, the algorithm will 
mainly be improving the vector, C,. This truncation proce- 
dure is acceptable for both ground and excited states, 
provided that the matrix (H,,-&I) is positive definite. 

TABLE IV 

Comparison of the Eigenvalue Problem with QDVARPT 

Number of CPU time 
Number of matrix-vector (seconds on 

Method iterations products IBM 3090 120s) 

A 62 62 5050 
B 17 64 3090 
C 82 82 7ooo 

Note. The matrix is from a MRCI with 25 reference configurations on 
Fl using a (12s, Sp, 64 2A g) basis set. The matrix dimension is 52847 and 
five eigenvectors were found. A. Original Davidson algorithm with each 
root obtained separately. B. Block Davidson method with least squares 
extrapolation. (See text for details of how often the extrapolation was 
performed.) C. QDVARPT calculation with algorithm outlined in text. For 
methods A-C truncation was performed when 40 vectors had been stored 
on disk. Method A truncated to one vector per root whilst methods B and 
C truncated to two vectors per root. 

This requires that the eigenvalues of the H,, block be higher 
than 1, for all the states of interest, and in most of the 
problems we are concerned with, this condition is obeyed. 

4. CONCLUSION 

The Davidson algorithm for large matrix diagonalisation 
can be converged more quickly by periodic use of least 
squares extrapolation. The truncation procedure suggested 
by Pulay and Van Lenthe has been shown to be effective 
when applied to excited state calculations within the 
framework of the block Davidson method. These modilica- 
tions represent an improvement over the traditional 
approach. 

The algorithm given here for the solution of the 
QDVARPT equations is as efficient as matrix diagonalisa- 
tion. It can be applied routinely to both the ground state 
and excited states of molecules and the truncation proce- 
dure based on the conjugate gradient method is effective in 
both cases. 
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